Seminar za unitarne reprezentacije i automorfne forme
lokacija:
PMF Matematički odsjek
vrijeme:
18.06.2025 - 17:15 - 19:00 Dana 18.06. 2025. (srijeda) u 17:15 sati u predavaoni 109 u
okviru Seminara za unitarne reprezentacije i automorfne forme,
Gordan Savin, University of Utah održat će predavanje pod naslovom:
Finiteness of big theta for (exceptional) real groups.
Abstract: In order to obtain a correspondence between representations of two Lie algebras, one needs a vector space with an action of the two Lie algebras.
Then, for each irreducible representation of one Lie algebra, one can define the full lift (also called big-theta). It is a representation of the other Lie algebra.
Of interest to us are situations when the big theta has finite length with unique quotient. The we have a correspondence of representations of two algebras.
Working in this general setting I will explain a strategy to prove that big theta has finite length.
For certain (quaternionic) exceptional dual pairs this takes us to a problem with quaternionic representations, introduced by Gross and
Wallach. I will explain what these are, and then how to establish the desired properties.
This is a joint work with Bakic and Loke.
Pozivaju se članovi seminara i ostali zainteresirani.
Podaci za online praćenje biti će objavljeni naknadno.
M.Hanzer
