# On superalgebras

Ajda Fošner University of Primorska Faculty of Management Cankarjeva 5 SI-6104 Koper Slovenia ajda.fosner@fm-kp.si Maja Fošner University of Maribor Faculty of Logistics Mariborska cesta 2 SI-3000 Celje Slovenia maja.fosner@uni-mb.si

#### Abstract

In this article we introduce the definition of associative superalgebras, basic characteristics, and give some examples.

2000 Math. Subj. Class.: 17A70.

### **1** Introduction

In the last few decades one of the most active and fertile subjects in algebra is recently developed theory of graded algebras and so called superalgebras. In [12] Kac wrote that the interest of the field of superalgebras appeared in physic in the contest of "supersimetry". A lot of results about superalgebras and graded algebras has been written by Kac, Martinez, Zelmanov, Wall, Shestakov and others (see for example [7, 8, 9, 11, 12, 13, 14, 15]). The main goal of this paper is to introduce a definition of associative superalgebras, give some examples, and present some basic properties.

By an algebra we shall mean an associative algebra over the field  $\Phi$ . We will assume that the definitions of algebra, module, and ideal is well known. However we shall write some definitions and explain some basic properties of an algebra. An algebra  $\mathcal{A}$  is *simple*, if  $\mathcal{A}^2 \neq 0$  and the only ideals of  $\mathcal{A}$  are 0 and  $\mathcal{A}$ . We say that an algebra  $\mathcal{A}$  is *prime* if the product of two nonzero ideals is nonzero. This is equivalent to the following implication: if  $a\mathcal{A}b = 0$  for some  $a, b \in \mathcal{A}$ , it follows that either a = 0 or b = 0. The example of a prime algebra is  $M_n(\mathbb{C})$ , the algebra of all  $n \times n$  complex matrices. The algebra is called *semiprime* if it has no nonzero nilpotent ideals (an ideal  $\mathcal{I}$ of an algebra  $\mathcal{A}$  is called *nilpotent*, if  $\mathcal{I}^n = 0$  for some number  $n \in \mathbb{N}$ ). This is equivalent to the property that  $a\mathcal{A}a = 0$  for some  $a \in \mathcal{A}$  implies that a = 0. Every prime algebra is semiprime algebra. It turns out that the converse is in general not true. Namely, if  $0 \neq \mathcal{A}$  is prime algebra, then  $\mathcal{A} \times \mathcal{A}$  is semiprime algebra, which is not prime.

# 2 Superalgebras

Dear readers, in the following chapter we invite you to the world of superalgebras. We will introduce some basic definitions and present some examples of associative superalgebras.

A superalgebra is a  $\mathbb{Z}_2$ -graded algebra. This means that there exist  $\Phi$ submodules  $\mathcal{A}_0$  and  $\mathcal{A}_1$  of  $\mathcal{A}$  such that  $\mathcal{A} = \mathcal{A}_0 \oplus \mathcal{A}_1$  and  $\mathcal{A}_0 \mathcal{A}_0 \subseteq \mathcal{A}_0$  (that means  $\mathcal{A}_0$  is a subalgebra of  $\mathcal{A}$ ),  $\mathcal{A}_0 \mathcal{A}_1 \subseteq \mathcal{A}_1$ ,  $\mathcal{A}_1 \mathcal{A}_0 \subseteq \mathcal{A}_1$  and  $\mathcal{A}_1 \mathcal{A}_1 \subseteq \mathcal{A}_0$ . We say that  $\mathcal{A}_0$  is the even, and  $\mathcal{A}_1$  is the odd part of  $\mathcal{A}$ .

An associative superalgebra  $\mathcal{A}$  is an associative  $\mathbb{Z}_2$ -graded algebra. We say that  $\mathcal{A}$  is a *trivial superalgebra*, if  $\mathcal{A}_1 = 0$ . If  $a \in \mathcal{A}_k$ , k = 0 or k = 1, then we say that a is homogeneous of degree k and we write |a| = k.

A graded  $\Phi$ -submodule  $\mathcal{B}$  of an associative superalgebra  $\mathcal{A}$  is such submodule of an algebra  $\mathcal{A}$  that

 $\mathcal{B} = \mathcal{B} \cap \mathcal{A}_0 \oplus \mathcal{B} \cap \mathcal{A}_1.$ 

In this case we write  $\mathcal{B}_0 = \mathcal{B} \cap \mathcal{A}_0$  and  $\mathcal{B}_1 = \mathcal{B} \cap \mathcal{A}_1$ . That means  $\mathcal{B} = \mathcal{B}_0 \oplus \mathcal{B}_1$ . If  $\mathcal{B}$  is a graded subalgebra of  $\mathcal{A}$ , than  $\mathcal{B}$  is also an associative superalgebra. A graded ideal (or superideal)  $\mathcal{I}$  of a superalgebra  $\mathcal{A}$  is an ideal of  $\mathcal{A}$ , which is also a graded  $\Phi$ -submodule. That is  $\mathcal{I} = \mathcal{I} \cap \mathcal{A}_0 \oplus \mathcal{I} \cap \mathcal{A}_1$  or  $\mathcal{I} = \mathcal{I}_0 \oplus \mathcal{I}_1$ .

Let us write something about the gradation. The natural question is how to make a decision about  $\mathbb{Z}_2$ -gradation? Given an associative superalgebra  $\mathcal{A} = \mathcal{A}_0 \oplus \mathcal{A}_1$ , we define  $\sigma : \mathcal{A} \to \mathcal{A}$  by  $(a_0 + a_1)^{\sigma} = a_0 - a_1$ . Note that  $\sigma$  is an automorphism of  $\mathcal{A}$  such that  $\sigma^2 = id$ . Conversely, given an algebra  $\mathcal{A}$  and an automorphism  $\sigma$  of  $\mathcal{A}$  with  $\sigma^2 = id$ ,  $\mathcal{A}$  then becomes a superalgebra by defining  $\mathcal{A}_0 = \{a \in \mathcal{A} \mid \sigma(a) = a\}$  and  $\mathcal{A}_1 = \{a \in \mathcal{A} \mid \sigma(a) = -a\}$  (indeed, any element  $a \in \mathcal{A}$  can be written as  $a = \frac{a+a^{\sigma}}{2} + \frac{a-a^{\sigma}}{2}$  and  $\frac{a+a^{\sigma}}{2} \in \mathcal{A}_0$ ,  $\frac{a-a^{\sigma}}{2} \in \mathcal{A}_1$ ). That is to say, the  $\mathbb{Z}_2$ -grading can be characterized via the automorphism with square *id*.

A submodule  $\mathcal{B}$  of a superalgebra  $\mathcal{A}$  is graded if and only if  $\mathcal{B}^{\sigma} = \mathcal{B}$ . Let the center  $\mathcal{Z}(\mathcal{A})$  of a superalgebra  $\mathcal{A}$  be the usual center of an algebra  $\mathcal{A}$ , that is  $\mathcal{Z}(\mathcal{A}) = \{a \in \mathcal{A} \mid ab = ba \; \forall b \in \mathcal{A}\}$ . The center is graded, since automorphism maps the center into itself. That means  $\mathcal{Z}(\mathcal{A}) = \mathcal{Z}(\mathcal{A})_0 \oplus \mathcal{Z}(\mathcal{A})_1$ .

In what follows we shall present some examples of associative superalgebras.

**Example 2.1** Let  $\mathcal{A}$  be an algebra and let  $c \in \mathcal{A}$  be an invertible element. Further, let  $\sigma$  be an automorphism of an algebra  $\mathcal{A}$ , which is defined by  $x^{\sigma} = cxc^{-1}$  for all  $x \in \mathcal{A}$ . We see that  $\sigma^2 = id$  if and only if  $c^2 \in \mathcal{Z}(\mathcal{A})$ . It follows that  $\mathcal{A} = \mathcal{A}_0 \oplus \mathcal{A}_1$  is a superalgebra, where  $\mathcal{A}_0 = \{x \in \mathcal{A} \mid xc = cx\}$  and  $\mathcal{A}_1 = \{x \in \mathcal{A} \mid xc = -cx\}$ .

In particular, let  $\mathcal{A} = M_{r+s}(\Phi)$  be an algebra of all  $(r+s) \times (r+s)$  matrices over  $\Phi$ ,  $r, s \in \mathbb{N}$ . For the element c we can choose a matrix  $\begin{bmatrix} I_r & 0\\ 0 & -I_s \end{bmatrix}$ , where  $I_r$  is an identity matrix of  $M_r(\Phi)$  and  $I_s$  is an identity matrix of  $M_s(\Phi)$ . Then the even and odd parts are given by

$$\mathcal{A}_0 = \begin{bmatrix} M_r(\Phi) & 0\\ 0 & M_s(\Phi) \end{bmatrix} \quad \text{in } \mathcal{A}_1 = \begin{bmatrix} 0 & M_{r,s}(\Phi)\\ M_{s,r}(\Phi) & 0 \end{bmatrix},$$

where  $M_{r,s}(\Phi)$  is the set of  $r \times s$  matrices. This algebra is an associative superalgebra and it is usually written as M(r|s).

**Example 2.2** Let A be an algebra over  $\Phi$  and let  $\mathcal{A} = A \times A$ . Furthermore, let  $\sigma$  be an automorphism on  $\mathcal{A}$ , defined by  $\sigma(a, b) = (b, a), a, b \in A$ . Then we have  $\mathcal{A} = \mathcal{A}_0 \oplus \mathcal{A}_1$ , where the even part is written in the form  $\mathcal{A}_0 = \{(a, a) \mid a \in A\}$  and the odd part in the form  $\mathcal{A}_1 = \{(b, -b) \mid b \in A\}$ . It turns out that  $\mathcal{A} \cong \{ \begin{bmatrix} C & D \\ D & C \end{bmatrix} \mid C, D \in A \}$ ,

$$\mathcal{A}_0 \cong \{ \begin{bmatrix} C & 0 \\ 0 & C \end{bmatrix} \mid C \in A \} \text{ and } \mathcal{A}_1 \cong \{ \begin{bmatrix} 0 & D \\ D & 0 \end{bmatrix} \mid D \in A \}.$$

In this case we say that the superalgebra  $\mathcal{A}$  is given by the exchange automorphism.

**Example 2.3** Let  $\mathcal{A} = Q(\alpha, \beta)$  be a 4-dimensional algebra over  $\Phi$  with a base  $\{1, uv, u, v\}$  and let the multiplication be defined as follows  $u^2 = \alpha \in \Phi$ ,  $v^2 = \beta \in \Phi$ , uv = -vu. In particular  $\mathcal{A}$  is the algebra of quaternions over  $\mathbb{R}$ . Let us write  $\mathcal{A}_0 = \Phi 1 + \Phi uv$  and  $\mathcal{A}_1 = \Phi u + \Phi v$ . Then it follows that  $\mathcal{A} = \mathcal{A}_0 \oplus \mathcal{A}_1$  is an associative superalgebra which is called the superalgebra of quaternions.

Let us write some basic properties of associative superalgebras. An associative superalgebra  $\mathcal{A}$  is *simple*, if it has no proper nonzero graded ideals. The only graded ideals are 0 and the whole superalgebra  $\mathcal{A}$ . Note that this does not mean that the simple superalgebra is simple as an algebra. If the product of two nonzero graded ideals of a superalgebra  $\mathcal{A}$  is nonzero, the superalgebra  $\mathcal{A}$  is called a *prime-superalgebra*. The superalgebra  $\mathcal{A}$  is nonzero the superalgebra, if it has no nonzero nilpotent graded ideals. As noted in [1], this is equivalent to the condition that  $a\mathcal{A}b = 0$ , where a and b are any *homogeneous elements* in  $\mathcal{A}$ , implies a = 0 or b = 0. In fact, the same conclusion holds true if we assume that only one of these two elements, say b, is homogeneous.

Let  $\mathcal{A}$  be a prime-superalgebra. The natural question that appears is: are the algebras  $\mathcal{A}$  in  $\mathcal{A}_0$  prime algebras as well? The next two examples show that this is not always true.

**Example 2.4** Let A be a prime algebra over  $\Phi$  and let  $\mathcal{A} = A \times A$  be a superalgebra with gradation defined as in the example 2.2. This algebra is a prime-superalgebra (the product of any two nonzero graded ideals is nonzero), which is not a prime algebra, since  $(0 \times A)(A \times 0) = 0$ .

**Example 2.5** The superalgebra M(r|s) is a prime-superalgebra. The sets

$$\mathcal{I} = \left\{ \begin{bmatrix} C & 0 \\ 0 & 0 \end{bmatrix} \mid C \in M_r(\mathbb{F}) \right\} \quad \text{and} \quad \mathcal{J} = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & D \end{bmatrix} \mid D \in M_s(\mathbb{F}) \right\}$$

are nonzero ideals of an algebra  $M(r|s)_0$  such that the product of them is zero. Thus, the algebra  $M(r|s)_0$  is not a prime algebra.

The answer about the connection between prime-superalgebra (or semiprimesuperalgebra)  $\mathcal{A}$  and prime algebras (or semiprime algebras)  $\mathcal{A}$  and  $\mathcal{A}_0$ is: if  $\mathcal{A}$  is an associative semiprime-superalgebra, then  $\mathcal{A}$  and  $\mathcal{A}_0$  are also semiprime algebras. In case  $\mathcal{A}$  is an associative prime-superalgebra, then either  $\mathcal{A}$  is prime algebra or  $\mathcal{A}_0$  is prime algebra. The proof of those results we can find in [13].

## 3 Conclusion

The natural question that appears is how to generalize some classical structures. Let us briefly describe the background. For example: let  $\mathcal{A}$  be an associative algebra. Introducing a new product in  $\mathcal{A}$ , the so called Jordan product  $a \circ b = ab + ba$ ,  $\mathcal{A}$  becomes a Jordan algebra, usually written as  $\mathcal{A}^+$ . The question is what is the connection between the structural properties of algebras  $\mathcal{A}$  and  $\mathcal{A}^+$  (for example, every ideal of an algebra  $\mathcal{A}$  is an ideal of  $\mathcal{A}^+$ , is the converse true?). Such questions were considered by Herstein in the 1950's (see [10]). He considered mainly simple algebras. Lately his theory was generalized. On this field a lot of papers were written by Lanski, Martindale, McCrimmon, Miers, Montgomery and many others. In the similar way we can introduce Jordan superalgebras. Again, the natural question is: what is the connection between the structure of superalgebras and Jordan superalgebras? We refer the reader to see for example [1, 2, 3, 4, 5, 7, 8, 9, 13].

At the end let us write that we can extent superalgebras to  $\mathcal{G}$ -graded algebras, where  $\mathcal{G}$  is an Abelian group. An algebra is  $\mathcal{G}$ -graded, if there exist subspaces  $\mathcal{A}_g, g \in \mathcal{G}$ , of  $\mathcal{A}$ , such that  $\mathcal{A} = \bigoplus_{g \in \mathcal{G}} \mathcal{A}_g$  and  $\mathcal{A}_g \mathcal{A}_h \subseteq \mathcal{A}_{gh}$  for all  $g, h \in \mathcal{G}$ . Superagebras are actually a special case of  $\mathcal{G}$ -graded algebras. In that case  $\mathcal{G} = \mathbb{Z}_2$ . In the field of  $\mathcal{G}$ -graded algebras we can also define structures such as modules, ideals, graded prime algebras, ... And therefore new natural problems appear.

### References

- K. I. Beidar, M. Brešar, M. A. Chebotar, Jordan superhomomorphisms, Comm. Algebra 31 (2003), 633-644.
- [2] M. Brešar, A. Fošner, M. Fošner, Jordan ideals revisited, Monatsh. Math., 1 (2005), 1–10.
- [3] M. Fošner, Jordan superderivations, Comm. Algebra 31 (2003), 4533-4545.
- [4] M. Fošner, Jordan superderivations, II, Internat. J. Math. Math. Sci. 2004 (2004), 2357–2369.
- [5] M. Fošner, On the extended centroid of prime associative superalgebras with applications to superderivations, *Comm. Algebra* 32 (2004), 689– 705.

- [6] M. Fošner, Asociativne superalgebre in jordanske strukture, doktorska disertacija, Maribor 2004.
- [7] C. Gómez-Ambrosi, J. Laliena, I. P. Shestakov, On the Lie structure of the skew elements of a prime superalgebra with superinvolution, *Comm. Algebra* 2 (2000), 3277–3291.
- [8] C. Gómez-Ambrosi, F. Montaner, On Herstein's constructions relating Jordan and associative superalgebras, *Comm. Algebra* 28 (2000), 3743– 3762.
- [9] C. Gómez-Ambrosi, I. P. Shestakov, On the Lie structure of the skew elements of a simple superalgebra with superinvolution, J. Algebra 208 (1998), 43–71.
- [10] I. N. Herstein, Topics in ring theory, The University of Chicago Press, Chicago 1969.
- [11] V. G. Kac, Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras, Comm. Algebra 13 (1977), 1375–1400.
- [12] V. G. Kac, Lie superalgebras, Advances in mathematics 26 (1977), 8–96.
- [13] F. Montaner, On the Lie structure of associative superalgebras, Comm. Algebra 26 (1998), 2337–2349.
- [14] S. Montgomery, Constructing simple Lie superalgebras from associative graded algebras, J. Algebra 195 (1997), 558–579.
- [15] I. P. Shestakov, Prime alternative superalgebras of arbitrary characteristic, Algebra and logic 36 (1997), 389-420.